Mapping class groups Problem sheet 2

Lent 2021

- 1. What is the maximal cardinality of a pairwise disjoint, pairwise non-isotopic set of essential simple closed curves on a closed surface S?
- 2. Exhibit $\phi \in \text{Mod}(S_q)$ of order g.
- 3. Let S be the closed, orientable surface obtained from a decagon P_{10} by identifying opposite sides in pairs.
 - (a) What is the genus of S?
 - (b) Let ϕ be the rotation of P_{10} by π . Show that ϕ induces a self-homeomorphism of S. What is its order in Mod(S)?
- 4. Let γ be an element of a group G. The corresponding *inner automorphism* of G is defined by

$$i_{\gamma}: g \mapsto \gamma g \gamma^{-1}$$
.

Let $\operatorname{Inn}(G)$ denote the image of the map $G \to \operatorname{Aut}(G)$ sending $\gamma \mapsto i_{\gamma}$.

- (a) Prove that $\gamma \mapsto i_{\gamma}$ is a homomorphism and that $\operatorname{Inn}(G) \lhd \operatorname{Aut}(G)$. What is the kernel of the homomorphism $G \to \operatorname{Inn}(G)$?
- (b) The quotient $\operatorname{Out}(G) := \operatorname{Aut}(G)/\operatorname{Inn}(G)$ is called the *outer automorphism group* of G. Exhibit a homomorphism $\operatorname{Mod}(S) \to \operatorname{Out}(\pi_1 S)$.
- (c) Is the homomorphism $Mod(S) \to Out(\pi_1 S)$ surjective?

- 5. Let S be closed and hyperbolic, and let $\phi: S \to S$ be an isometry isotopic to the identity. Show that ϕ is equal to the identity.
- 6. Let G be any finite group.
 - (a) Show that there is a surjection $\pi_1 S_g \to G$, for some g.
 - (b) Show that G is a subgroup of $Mod(S_h)$, for some h.
- 7. Let S be closed and hyperbolic. Let $\phi \in \text{Homeo}^+(S)$ and suppose that, for every simple closed curve α , $\phi \circ \alpha$ is homotopic to α . Show that ϕ is isotopic to the identity.
- 8. Let α, β be a pair of simple closed curves on a surface S, such that $i(\alpha, \beta) = 1$.
 - (a) Prove that $T_{\alpha}T_{\beta}(\alpha) = \beta$.
 - (b) Prove the braid relation: $T_{\alpha}T_{\beta}T_{\alpha} = T_{\beta}T_{\alpha}T_{\beta}$.
- 9. Let $S = S_{1,0,1}$, the torus with one boundary component. Let α, β be a standard pair of simple closed curves on S such that $i(\alpha, \beta) = 1$, and let γ be the boundary curve. Prove that $T_{\gamma} = (T_{\alpha}T_{\beta})^{6}$.
- 10. Let S be the closed surface of genus $g \geq 3$. Prove that the centre of Mod(S) is trivial. [Hint: consider a suitable collection of simple closed curves on S. For instance, when g = 3, consider the curves in the following picture.]

11. The group $SL_2(\mathbb{Z})$ has a presentation

$$\langle a, b \mid aba = bab, (ab)^6 = 1 \rangle$$

where a and b correspond to the elementary matrices

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right) \text{ and } \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right)$$

respectively. Prove that

$$\operatorname{Mod}(S_{1,0,1}) \cong \langle a, b \mid aba = bab \rangle.$$