Mapping class groups Problem sheet 2

Lent 2021

1. What is the maximal cardinality of a pairwise disjoint, pairwise nonisotopic set of essential simple closed curves on a closed surface S ?
2. Exhibit $\phi \in \operatorname{Mod}\left(S_{g}\right)$ of order g.
3. Let S be the closed, orientable surface obtained from a decagon P_{10} by identifying opposite sides in pairs.
(a) What is the genus of S ?
(b) Let ϕ be the rotation of P_{10} by π. Show that ϕ induces a selfhomeomorphism of S. What is its order in $\operatorname{Mod}(S)$?
4. Let γ be an element of a group G. The corresponding inner automorphism of G is defined by

$$
i_{\gamma}: g \mapsto \gamma g \gamma^{-1} .
$$

Let $\operatorname{Inn}(G)$ denote the image of the map $G \rightarrow \operatorname{Aut}(G)$ sending $\gamma \mapsto i_{\gamma}$.
(a) Prove that $\gamma \mapsto i_{\gamma}$ is a homomorphism and that $\operatorname{Inn}(G) \triangleleft \operatorname{Aut}(G)$. What is the kernel of the homomorphism $G \rightarrow \operatorname{Inn}(G)$?
(b) The quotient $\operatorname{Out}(G):=\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is called the outer automorphism group of G. Exhibit a homomorphism $\operatorname{Mod}(S) \rightarrow$ $\operatorname{Out}\left(\pi_{1} S\right)$.
(c) Is the homomorphism $\operatorname{Mod}(S) \rightarrow \operatorname{Out}\left(\pi_{1} S\right)$ surjective?
5. Let S be closed and hyperbolic, and let $\phi: S \rightarrow S$ be an isometry isotopic to the identity. Show that ϕ is equal to the identity.
6. Let G be any finite group.
(a) Show that there is a surjection $\pi_{1} S_{g} \rightarrow G$, for some g.
(b) Show that G is a subgroup of $\operatorname{Mod}\left(S_{h}\right)$, for some h.
7. Let S be closed and hyperbolic. Let $\phi \in \operatorname{Homeo}^{+}(S)$ and suppose that, for every simple closed curve $\alpha, \phi \circ \alpha$ is homotopic to α. Show that ϕ is isotopic to the identity.
8. Let α, β be a pair of simple closed curves on a surface S, such that $i(\alpha, \beta)=1$.
(a) Prove that $T_{\alpha} T_{\beta}(\alpha)=\beta$.
(b) Prove the braid relation: $T_{\alpha} T_{\beta} T_{\alpha}=T_{\beta} T_{\alpha} T_{\beta}$.
9. Let $S=S_{1,0,1}$, the torus with one boundary component. Let α, β be a standard pair of simple closed curves on S such that $i(\alpha, \beta)=1$, and let γ be the boundary curve. Prove that $T_{\gamma}=\left(T_{\alpha} T_{\beta}\right)^{6}$.
10. Let S be the closed surface of genus $g \geq 3$. Prove that the centre of $\operatorname{Mod}(S)$ is trivial. [Hint: consider a suitable collection of simple closed curves on S. For instance, when $g=3$, consider the curves in the following picture.]

11. The group $S L_{2}(\mathbb{Z})$ has a presentation

$$
\left\langle a, b \mid a b a=b a b,(a b)^{6}=1\right\rangle
$$

where a and b correspond to the elementary matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \text { and }\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

respectively. Prove that

$$
\operatorname{Mod}\left(S_{1,0,1}\right) \cong\langle a, b \mid a b a=b a b\rangle
$$

